Connecting IDE Drives to 8-Bit Systems

By Tilmann Reh

Interfacing Systems
Intermedate Skills

8 - Bit Construction

Irecently went to a IDE drive on my own
system. Since then I have been wonder-
ing about their technical side. Although
Tilmann is interested mostly in their 8-
Bit data usage, the information presented
here will help with any system. So
Tilmann can I hook this to my NOVIX
system? Read on and see for yourself.
BDK

Most of us know about the features of a
hard disk compared to floppy disk op-
eration. You get much higher storage
capacity while dropping access times
down to a few milliseconds. Before in-
stalling a hard disk, I was used to copy-
ing all files for the current project to the
RAM disk of my CPU280 and then copy-
ing all changed files back to floppy when
I was finished working for the day. Al-
though this is much better than working
with floppy disks only, it is not compa-
rable to using a hard disk. With a hard
disk, you just work on your projects,
which can now use files that would not
fit on a floppy or RAM disk, and you
don’t have to copy files around the drives.
In addition, the access times are almost
as fast as those of a RAM disk. Last but
not least, you are freed from changing
floppies like a D.J., since all files are
accessible without mechanical action on
your part.

The Technology Decision

When thinking about connecting a hard
disk to a given computer system, the
main decision that must be made is which
interface technology should be used. The
old ST-412/506 interface is not up to
date (I think it is impossible to buy new,
small drives with that interface), and the
hardware expense for this type of con-
troller 1s great. Additionally, these con-

The Computer Journal / #56

trollers have some critical analog cir-
cuits which have to be adjusted very
carefully.

The next technological step was the ESDI
interface, which is quite similar to ST-
412/506, except that data is transmitted
in parallel and with higher(but still fixed)
data rates. The ESDI controllers are more
complex and the drives more expensive
than the ST-506 components. So ESDI
is not interesting for our use.

The SCSI interface is a universal pe-
ripheral interface that is often used for
hard disk connection. Some machines
(Apple Macintosh, NeXT) even support
no other interface for this purpose. SCSI
is a very powerful and good interface,
and SCSI drives are well established and
available at acceptable prices. For the
host interface (that is the controller) there
are some chips available that do the
complete bus protocol work in hardware
and software and deliver raw data for the
host processor.

Another alternative is the IDE interface
(also known as the AT Bus interface).
This interface is used in almost all IBM
clones these days. Like the SCSI drives,
the IDE drives contain the complete hard
disk controller on the drive (this is where
the name comes from: IDE means ‘In-
tegrated Drive Electronics’”). But these
drives are connected to the standard PC-
AT bus system and are accessed just as
with the normal PC-AT hard disk con-
troller. So, in effect, you don’t need a
controller any more but just some inter-
face electronics that simulates an AT
bus. The IDE drives are slightly cheaper
than similar SCSI drives, and since the
interface is simpler, I chose this one for
my project.

However, it must be said that this deci-
sion was made with only the hard disk
connection in mind. If someone wants to
connect more peripheral devices (i.c.,
scanners, CD ROM, etc.) or more than
two hard disks (which is the IDE limit),
the SCSI interface is preferable (one
interface for all devices).

The Interface Circuit

The greatest problem when interfacing
an IDE disk to an 8-bit computer system
is the differing bus width. While the
control registers of the IDE drive are
still eight bits wide, the data transfer is
done word-wise (16 bits each transfer).
So we need an interface which maps the
16-bit data register to the 8-bit bus.

There are two basic approaches to doing
that. The first (and easiest) one is to map
the two halves of the 16-bit data into two
different I/O addresses. The strobe for
the IDE drive would have to be gener-
ated with the read signal for the lower
half and with the write signal for the
upper half. The control registers would
then be accessed by always reading the
LSB and writing the MSB. However,
although only simple hardware is re-
quired, this method has a very great dis-
advantage: since two different I/O ad-
dresses must be accessed alternately, you
cannot use string instructions (such as
the Z80 INIR/OTIR) or a DMA control-
ler for data transfer. Thus, the transfer
rate would be relatively slow and the
programming not very elegant.

The other approach is to map the 16-bit
data onto two consecutive accesses to the
same I/O address. This way, some cir-
cuit expense is necessary to switch the
right data halves to the data bus and to

i1

handle the 8-bit accesses to the control
registers. However, with this slightly
more complex hardware, we get great
software advantages. With this technique,
using string instructions or DMA is the
normal way to transfer the data to or
from the disk drive.

Of course, we need some circuitry to
remember which half is to be processed
next, in order to select the correct data
path and generate the correct strobes for
the drive. As we have to distinguish only
two cases, one flip-flop is enough. Since
I planned to use a GAL (generic array
logic) for address decoding and bus in-
terface anyhow, I used one of the GAL
macrocells to make the flip-flop. The
clock pulse for the flip-flop is generated
each time any register is accessed, and
the data is set to zero when other than
the data register is selected. This way,
accesses to any control register also reset
the state flip-flop, thus ensuring proper
conditions when the data transfer is
started.

The rest of the interface circuit is self-
explanatory: one half of the 16-bit data
is always processed directly, while the
other half is stored in a latch or register.
For the control registers, the latch be-
comes transparent. The strobes and se-
lect signals for latches, buffers, and drive
are generated with the GAL mentioned
above.

Slack Space On Board

The IDE interface itself would easily fit
twice (or even three or more times) on a
standard EuroCard-sized PCB. To avoid
wasting board space, I filled the free
space with some useful circuits which
would serve the CPU280 very especially
well but also make sense with other sys-
tems. The first additional circuit is an
active termination for the complete ECB
Bus, which is absolutely necessary with
bus clocks of 4 MHz or more and a
backplane of some length. With still more
space left, I added two control buttons
for hardware reset and NMI (non-mask-
able interrupt) generation and four LEDs
as a power-control monitor. Last but not
least, I finished the design with a
Centronics-type parallel printer interface.
The decoding signals for this interface

12

are generated using components that were
already there for the IDE interface, so this
involved almost no additional circuit ex-
pense. Of course, if someone needs only
the IDE interface, they can just leave the
rest of the board unused!

How To Get One

If you are interested in the interface, I
think it will again be the best to contact
Jay Sage for the availability of PCBs, pro-
grammed GALs, driver software, etc.

Tillmann Reh is an electronic engineer
at the University of Siegen, Germany.

He also owns a small company that
develops custom solutions using em-

bedded controllers or microcomputers.

Tillmann has been active with CP/M
since 1983 and developed a number of
ECB-bus boards. He can be reached
by regular mail at 'In der Grossenbach
46, W-5900 Siegen, Germany' or by E-

mail (international/bitnet) at
‘tilmann.reh@hrz.uni-siegen.dbp.de'.

TITLE IDE/CENTRONICS INTERFACE GAL IC1
AUTHOR TILMANN REH

COMPANY REHDESIGN

DATE 22.03.1992

; Accesses to the hard disk are always with LH = high. So this signal

; has complementary meanings when reading resp. writing. To access the
; drive with the first data read, the LH flipflop has to be set before

; the real data transfer begins (one dummy-read of the data register).

CHIP IDE PALCE20V8

CK A7 A4 A5 IORQ A6 WR A0 A1 A2 A3 GND

OE M1 CLK LH CSO RD16 SEL WRLO WR16 RDHI RD VCC

; Base address (BASE) to be changed only here! The lower nibble of the
; addresses are partly fixed by the hardware design.

STRING BASE ‘(A7 * /A6 * /AS * /A4)’

STRING PARSEL ‘(BASE * /A3 * A2* /A1 * AQ)

STRING CS1ADR ‘(BASE * /A3 * A2 * A1)

STRING DATADR ‘(BASE * A3 * /A2 * /A1 * /AO)
STRING TFRADR ‘(BASE * A3 * (A2 + A1 + AQ))’
STRING IDEADR (CS1ADR + DATADR + TFRADRY'

EQUATIONS

/CS0 = TFRADR
+ DATADR * LH

/SEL = (PARSEL + IDEADR) * /IORQ * M1
/CLK = (DATADR + TFRADR) * /IORQ

LH :=/LH* /TFRADR

WRLO = DATADR * /IORQ * WR * /LH

+ (TFRADR + CS1ADR) * /IORQ * /WR
/WR16 = IDEADR * /IORQ * /WR

/RD16 = DATADR * /IORQ * /RD * LH
+ (TFRADR + CS1ADR) * /IORQ * /RD

/RDHI = DATADR * /IORQ */RD * /LH

;. Base Address 80h
; Centronics Adr. x5
; CS1 Adr. x6..x7
; CS0/Data Adr. x8

: CSO/Task Adr. x9..xF
; all IDE-Addresses

; Task File Access
; Data Write MSB / Read LSB

. Board Access
; LH-Clock: Data & Task File

; FlipFlop: LSB/MSB Toggle
. Reset if Task File Access

; write Data LSB in latch
, transparent for all others

; MSB and latched LSB to IDE

; read Data LSB, latch MSB
; all others transparent

; read Data MSB from latch

The Computer Journal / #56

Ter minierungs-Wider stande

RN3 => DO0..07

IDE-Inter face

RN4 -> AD..A7
220392 TR & RNS -> RB..AL5
RN& -> MRG, IORG, RD, WR, M1, RFSH, CLK, 2CLK
13 453 R6..R9 -> INT,NMI,HAIT,BUSRG
70E IC1
14
> s
A7 20V8 4 e sy —
$hs o SEEEREER(EREEREE(2EEEEREE(SEEEEEEE[TR os
A5 LRDIE N D14
3 2 D13 14
rvn /ROHI |25 J N D13
A3 sWR16 ~ w|v @ IR) ™ «In © | 1ol o] |~ oz 12 012
10 a2 RO 0 [K03 =1 B [T [30) B 2] 2 LN) {1 e L] B oy (o] LN o] L i) Bt oy £o] B 0] 21 R I (D11 10 o1t
2 e L re DN 3 re AL
&l o Leso 112 1C6 1c7 1cs 7 19 05 6|0
; AR jong T ul 373 18] ¢ 244 e 374 U ore 244 \3;3 ; 08
| BT e TRl SFEFEFENT SPPERFFE oRNEFERRE e o
sy 152 _f12, 330R, 404 E‘ > CLK ——_—I‘S ‘gi' ; 05
»n:;:)z%_c.mn Ie l 8)5)8)5)a)s)a)a 8j8)a)d)a 8)38)5)5)8)5)8)8 3)3J8)5)8)5)5)8 52 13 gg
Ol___15
D1
/RESIN :‘C‘ .-I% Iz B 1 2w
A 3] 244 I /CSt
A2 7a [I ! /RE!
Ny 361 a2
[5¢ 15 33
$ 22c 3 Ic12 =
o 7 17 a2 123 2 o pE] e
24c 2 25
/RD J_l,,ﬂ: - o8 53“ o olt2 — gf :::gl
37t 2 Iis;c2 PO
o —-x——l—llxl }H' || 218, %, 51,2630, 40 ;ND
c 28
g: a 8| 5 \ 39] LE
e Z IL_ls, |, g3 D1 R1 3]/gg
o4 3- g FE g 12 IC4D LED-3 330R L
03 1: > 13 CN2
pg e < 10€E
2 2] 245
0o 3
e iz o
20 2 —
/NMI < 244 +1vo m}(,\ m}(,,,* —_—— =
Eng j=1 1 12 st el I CN3
xwar>z | CENTRONICS
€ YFEa
lafalal c a7, |
sizs]zszﬁjz 4RIl + 1c11 + 1C6 + 1c3 CEl? 1
4 R12F 244 373 245
e B] —
Taf — —-
CKé& CKS CK4 13 |
i IC10 i I1CS 1 I1C8 _{% h—
T T T B per
] 374 244 374 Tl —
-] N
CK? L
‘ -J[- 1c7 L, —
‘ D 244 —_—
| — | 8
no | Z|] — w
;S 4 A
8 c1 ol —
= :' 20U8 +] —
& —k? T ek | |7 —
[&] e—
112 1 s O J_CKB T —
123 TLC271 I1C2 W ——
(211211 Sul T 123% — z
— —& o= ol — b
@ CKS T —
E: %5 DL T)55 —
ey R W1 —
~R2 - J——
~ (K12 JRs 1 —jEK16 CK10 ‘ J—
3L icrs L 2l
oT @ @ K18 T Ics &bl —
00 gF 133 N —132
R14] crigie []

The Computer Journal / #56 13

CONNECTING IDE DRIVES

by Tilmann Reh

Special Feature
Intermediate Users

Part 2: IDE Basics

Now it has been already one year since I described my 8-bit
ECB-bus-based IDE interface here in TCJ. The delay in con-
tinuing with my description was caused by difficulties with the
communication path between me and Bill Kibler. Since then,
some questions have come up which were not covered by that
article. So here is the missing information, I hope.

Remembering the Basics

Let us first have a short look at the drives we want to use. When
discussing the different hard disk interfaces in my last article,
I already pointed out that IDE drives of the AT-type, thus often
called AT-bus drives (Bill Kibler calls them ATA drives, but
this abbreviation is not the usual one, at least in Europe), are
the ones with the best price/performance ratio one can get. This
is even more the case now. So IDE drives still are the very first
choice if you are looking for a good and cheap hard disk for
your computer.

But what’s special with those drives? I already mentioned that
the IDE drive contains the complete hard disk controller. It is
accessed with a system-bus interface compatible with the PC/
AT (ISA) bus and offers control and data registers still com-
patible with the very first PC/AT hard disk controller (based on
the WD 1010 controller chip). But even if those specifications
come from something I don’t like at all, why not use the low-
price components for real computing (i.e., with a CPU280)?

Bringing the hard disk controller into the drive electronics
offers some advantages. One of the main features is that you
don’t have a serial data stream with fixed bit rate between
controller and drive. Thus, there’s no need for conditioning the
signals for the interface, and you can use any bit rate. As a
result, the hard disk performance is limited by the drive tech-
nology, not by the interface’s bit rate. This is one reason why
today’s drives are so much faster than the older ones. And
technologies like Seagate’s ZBR (Zone Bit Recording) are
possible with hardware-independent interfaces.

There is another main feature of bringing the controller into
the disk drive. Today’s drives have very extensive checks for
data security. They store error correction codes (ECC) together
with the sector data and automatically correct single-bit errors,
so the sector need not be re-read in those cases. Additionally,
if a sector is found to be too unreliable, it is internally marked

The Computer Journal / #63

as bad and the data is mapped to a spare sector (usually there
is one spare sector per track). All this is absolutely transparent
to the user. So you now know the reason why today’s intelligent
drives don’t have ‘‘defect lists’’ any more.

Since the PC’s have such bad software (and hardware, too),
there is another thing the integrated controller can do: translate
virtual addressing information into physical. That means that
the IDE drive is able to emulate another drive with different
parameters (cylinder count, number of heads, and sectors per
track). For the PC this is necessary because many PCs don’t
support drives with other than the historical 17 sectors per
track, and many do not support free configuration of the drive
parameters (only selection from a table is allowed). Also, some
PCs mask off some bits of the cylinder number, since the first
controller only had a 10-bit cylinder register -- so nearly every
IDE drive still supports an emulation mode with less than 1024
cylinders and 17 sectors per track.

The IDE Interface

As mentioned above, the IDE interface is almost completely
identical with a subset of the PC/AT expansion bus, so the
drive can be connected (almost) directly to that. The only
things required externally are two select signals (I/O address
decoding). This gives us some information about how the
interface works. In a PC the drive is accessed directly by the
CPU via I/O accesses to registers internal to the drive. The disk
data is transferred via the 16-bit data bus, but for compatibility
to the older systems (again!) only 8 bits are used for command
and status information. Besides the data bus, there are the
standard Intel-type data strobe signals (/IORD and /IOWR), a
few address lines, and some special signals. The connector is
a 40-pin header, not to be confused with the XT-type IDE
interface connector, which is also a 40-pin header but needs
somewhat different hardware and totally different software!

The IDE interface allows connection of two drives with one
cable. The second drive (slave) is then chained to the first one
(master). However, I heard about problems when trying to
connect different drives from different manufacturers. And the
capacities of today’s drive are so high that a single drive will

29

always be enough for an 8-bit personal computer system! So,
I never tried this option.

To understand the interface in detail, let’s have a closer look
at the IDE interface connector and its signals:

1 /RES 2 GND

3 D7 4 D8

5 D6 6 D9

7 D5 8 DIo

9 D4 10 DIl

11 D3 12 DI2

13 D2 14 DI3

15 DI 16 DI14

17 DO 18 D15

19 GND 20 No Pin
21 /IOCHRDY 22 GND
23 /IOWR 24 GND
25 /IORD 26 GND
27 /TOCHRDY 28 ALE
29 No Connection 30 GND
31 IRQ 32 /1016
33 Al 34 /PDIAG
35 A0 36 A2

37 /CSO 38 /CS1
39 /ACT 40 GND

The signals of the IDE interface can be collected in several
groups: The general control signals are /RES (Reset) and /
PDIAG (Passed Diagnostics). The data bus consists of 16 data
lines (D0..D15). The access control lines are three address
lines (A0..A2), the select signals /CS0 and /CS1 (Chip Select
0/1), and the strobe signals /IORD and /IOWR (and eventually
ALE, the address strobe). The remaining signals (IOCHRDY,
IRQ, /ACT, /1016) are status signals.

Now Let’s Go Into Details.

The reset signal normally is active-low. However, [heard about
drives with an active-high reset signal, but I never saw one (or
read such specifications). The /PDIAG pin carries a bidirec-
tional signal used for chaining two IDE drives (master/slave).
It normally can also be left open.

The data bus carries the 16-bit data words to and from the host.
However, when accessing the control and status registers of the
IDE drives, only data bits O through 7 are used (8-bit transfer).
The data bus lines are tri-state lines that may be connected
directly to the host’s data bus. However, to meet the host bus
specs and to avoid noise problems caused by the interface cable,
a bus driver IC should be used to decouple the IDE bus and the
host bus.

The drive is accessed using the selection signals /CSO and /
CS1. This also has historical (compatibility) reasons. Together
with the three address lines. there could be two-times-eight
addresses being occupied by an IDE drive. However, while the
main register set really has eight registers and is accessed with

30

/CSO active, the other set (with /CS1) has only two valid
addresses. We will have a deeper look at all the registers later.
The data transfer is always strobed by the timing signals /[ORD
and /IOWR, for reading and writing, respectively. The address
strobe (ALE) is often unused in the drive; it should be pulled
high for static address lines (non-multiplexed busses).

The status signals are not absolutely needed to use IDE drives.
Some of these signals are not commonly delivered at all (for
example, /IOCHRDY (I/O Channel Ready), which is a WAIT
signal for the host when the drive is much slower than the host
processor in terms of interface access times). The /IO16 line
informs the host of 16-bit transfers. Since we already know that
data transfers are always 16-bit and everything else is always
8-bit, this is redundant (however, necded in the PC/ATs for
their ISA bus). Line /ACT (Active) is an output which can be
used for driving a drive-busy LED. Line IRQ is an interrupt
request line that goes active on some internal events (if enabled
by software).

Most IDE drives contain some jumpers that allow some options
to be selected. This normally includes at least master/slave
selection. Sometimes the /ACT signal may also be jumpered as
an output signalling the presence of a second (slave) drive. The
default state of the jumpers normally need not be changed
(single drive, no special situation).

All interface lines carry CMOS-TTL-compatible signal levels.
However, some signals (IRQ, /PDIAG, /1016, /ACT) are able
to drive higher currents. Those dctails should be looked up in
each drive’s specifications (for example, the /ACT output sinks
20 mA on my Conner drive, more than enough for an LED).

Accessing the drive is done with the following sequence of
operations: First, the address lines and the chip selects must
be set according to the desired rcgister address. After some
time (a minimum of 25 ns), /IORD or /IOWR is activated. This
causes the data to appear on the data lines (when reading) or
to be written to the drive (with the trailing edge of /IOWR, but
there are setup and hold times to take care of). After a mini-
mum of 80 ns, the strobe signal has to be removed. There are
some more timing requirements, but these are the main ones.

The above timing details might differ from drive to drive.
Always keep in mind that the IDE definition follows the PC/
AT system expansion bus and that official standards were not
specified until two years ago, when the IEEE finally defined
some specifictions (which many PC manufacturers are not
following).

Unfortunately, I found that the drives do not match their own
specs in every detail. For example, I found that the address
lines of my Conner drive (a CP-3044 with 42 MB) must be kept
stable for much more than the specified setup time. In addition,
the drive is very sensitive to spike noise on the address lines,
even if the noise appears long before an access is initiated. I

The Computer Journal / #63

spent a great deal of time struggling with such unlucky details
(fixing other people’s bugs).

IDE Interface Registers

Now that we’ve covered the interface signals and their mean-
ing and usage, let’s look at the registers of the interface. We
saw that there are eight addresses being accessed through /CS0
and two addresses through /CS1. The following is a list of all
the internal registers of an IDE drive:

Write Function

/CS0 /CS1 A2 A1 A0 Addr. Read Function

0 1 0 0 0O 1F0 Data Register Data Register

0 1 0 01 1F1 Error Register (Write Precomp Reg.)
0 1 0 1 0 1F2 Sector Count Sector Count

0 1 0 1 1 1F3 Sector Number Sector Number

0 1 1 0 0 1F4 Cylinder Low Cylinder Low

0 1 1 0 1 1F5 Cylinder High Cylinder High

0 1 1 1 0 1F6 SDH Register SDH Register

0 1 1 1 1 1F7 Status Register Command Register
1 0 1 1 0 3F6 Alternate Status Digital Output

1 0 1 1 1 3F7 Drive Address Not Used

The above addresses are those used in the PC/AT. Of course
they are dependent on the decoding of the chip-select signals.
The registers accessed via /CS1 might differ depending on the
manufacturer of the drive. As far as I know, they don’t always
follow the compatibility principle with the first hard disk
controller of the PC/AT.

The registers being accessed with /CSO are also called the
““Task File’’, so sometimes the IDE is also referenced to as
““Task File Interface”’.

The error register can only be read. It contains valid informa-
tion only if the error bit in the status register is set. Only five
of the eight bits are used. They have the following meaning:
Bit 7: Bad block. This bit is set when the requested sector’s
ID contained a bad block mark (can be set when formatting the
disk).

Bit 6: Uncorrectable data error. Set when the sector data
can’t be recreated (even with ECC).

Bit4: Requested sector ID not found (wrong sector number).

Bit 2: Command was aborted due to drive status error or invalid
command.

Bit 1: Track 0 has not been found when recalibrating.

The unused bits are always read as zero. However, I guess it’s
best not to rely on that!

The write precompensation register was previously used to set

the starting cylinder for write precompensation (a slight shift
of the serial data stream pulses to compensate for some mag-

The Computer Journal / #63

netic effects on the disk surface). Since IDE drives handle all
that internally, this function is not needed any more. Today,
this register is often used as a parameter register for enabling
or disabling look-ahead reading. We’ll have a deeper look at
that when talking about the various commands of IDE drives.

The sector-count register defines the number of sectors to be
read or written with the next read/write command. A zero
value causes 256 sectors to be processed, so the count varies
from 1 to 256. This register is also used during drive initial-
ization to specify the number of sectors per track (remember
the emulation capability).

The sector-number register contains the starting sector number
for any disk access. After a sector is processed, and after the
command is completed, this register is updated. When an error
occurs, this register contains the ID number of the erroneous
sector. Normally, the sector numbers start with 1 and increase
with each sector. However, by reformatting the disk, this order
and the values may be changed.

The cylinder-low and cylinder-high registers contain the 10-bit
cylinder number to be accessed. Since many drives have more
than 1024 cylinders today, the cylinder-high register is often
expanded to more than two bits. Like the sector-number reg-
ister, these registers are updated after command completion
and after errors. They are also used during drive initialization
as the number-of-cylinders parameter.

The SDH register is a special register serving several functions.
SDH is an abbreviation for ‘‘Sector size, Drive and Head”’. The
bits of this register are arranged as follows:

Bit 7: Historical: Extension Bit. When zero, CRC data is
appended to the sector’s data fields. When set to one, no CRC
data is appended. Since today’s drives always use ECC error
correction, this bit must always be set (no CRC).

Bit 6-5: Sector Size. Since today’s drives always have 512-byte
sectors (unchangeable by the user) because PCs are not able to
support other sizes, these bits must always be 0-1.

Bit4: Drive. This bit distinguishes between the two connected
drives when using the master-slave chain. Single drives are
always accessed with the drive bit sct to zero.

Bit 3-0: Head number. These four bits contain the head
number (that is, the disk surface number) for all following
accesses. Similar to the cylinder and sector number, these bits
are updated by the drive. The head number field is also used
for drive initialization to specify the number of heads.

The read-only status register contains eight single-bit flags. It
is updated at the completion of each command. If the busy bit
is active, no other bits are valid. The index bit is valid indepen-
dent of the applied command. The bit flags are:

Bit 7: Busy flag. When this flag is set, the task file registers

31

must not be accessed due to internal operations.

Bit6: Drive ready. This bit is set when the drive is up to speed
and ready to accept a command. When there is an error, th's
bit is not updated until the next read of the status register, so
it can be used to determinc the cause of the error.

Bit 5: Drive write fault. Similar to “‘drive ready’’. this bit is
not updated after an error.

Bit 4. Drive seck complete. This bit is set when the actuator
of the drive’s head is on track. This bit also is updated similarly
to “‘drive ready’’.

Bit 3: Data request. This bit indicates that the drive is ready
for a data transfer.

Bit 2: Corrected data flag. Sct when there was a correctable
data error and the data has been corrected.

Bit 1: Index. This bit is active once per disk revolution. May
be used to determine rotational speed.

Bit0: Error flag. This bit is set whenever an error occurs. The
other bits in the status register and the bits in the error register
will then contain further information about the cause of the
error.

The command regsster is used to pass commands to the drive.
There are many commands, not always using all parameters in
the task file. Command execution begins immediately after the
command is written to this register. Since this article is already
quite long, I will cover the commands, their parameters, and
their usage in another article, probably in the next TCJ issue.

The alternate status register contains the same information as
the status register in the task file. The only difference is that

reading this rcgister does not imply interrupt acknowledge to
reset a pending interrupt (as the main status register does).

The digital output register contains only two valid data bits. Bit
2 is the software reset bit, which causcs a drive reset when
being set, and bit 1 is the interrupt enable Mag.

The drive-address register simply loops back the drive select bit
and head select bits of the currently selected drive. This infor-
mation normally is of no use for the programmer or user.

Last Words

Now that we had a look at the IDE interface, we also sec the
physical limits of this interface definition. With a fully ex-
panded cylinder-high register, we arc ablc to address up to
65536 cylinders. with up to 16 heads and up to 256 sectors per
track. This results in a maximum addressable drive capacity of
128 gigabytes. 1 think this should be cnough for
microcomputing!! However, even if the PC/AT BIOS limi-
tations are encountered, we could address 1024 cylinders with
16 heads and 64 sectors per tracks. giving 512 megabytes
maximum capacity. This is also not bad, at lcast for small (8-
bit) computer systems, where complete application software
packages require only about 100 kilobytes of disk space.

Next time 1 would like to talk about the applicable commands
of IDE drives and give examples of how to write softwarc that
accesses those drives. Perhaps I will also return to describing
my IDE interface board for the 8-bit ECB bus in more detail.
If you have questions or details about which you would like to
read more, contact me at the following addresses:

Tilmann Reh
In der Grossenbach 46
D-57072 Siegen. Germany

¢-Mail: tilmann.reh@hrz.uni-sicgen.d400.de

List of Abbreviations:
AT Advanced Technology
BIOS Basic 1/O System
CMOS Complementary Metal-Oxid-Silicon
CRC Cyclic Redundancy Check
ECB 27?
ECC Error Correction Code
IDE Integrated Drive Electronics
IEEE Institute of Electrical and Electronics Engincers
I/0 Input/Output
ISA Industry Standard Architecture
LED Light Emmitting Diode
(ON} Operating System
PC Personal Computer
TTL Transistor-Transistor-Logic
XT eXtended Technology
ZBR Zone Bit Recording

Class of PC’s

Hardware-dependent part of OS
Semiconductor technology

Error detection code, see also ECC
European standard 8-bit system bus
Additional data for security
Intelligent hard disk interface

(self-explanatory)

PC/AT expansion bus

Optoclectronical component

Software which makes computers usable
Synonym for the worst computer architecture
Digital component standard (74xx scries)
Class of PCs, previous to AT

Variable Density Recording Method

32

The Computer Journal / #63

CONNECTING IDE DRIVES

by Tilmann Reh

Special Feature
Intermediate Users

Part 3: IDE Commands

In Part IT (printed in the previous issue of 7CJ) we covered the
basics of the IDE interface in terms of history, concept, hard-
ware, and register structure. This time we want to dig deeper
into the software side of those drives.

Terminology

Using common terminology, I often simply refer to the *‘drive”’
when, in fact, I am thinking of the integrated controller of an
IDE drive. However, when explicitly talking of an external
controller like the WD1010, I always refer to the ‘‘controller’’.

Register Accessing

Let us first recall the Task File. It consists of the data register,
a set of six parameter registers, and the command/status reg-
ister. For those who don’t have Part II lying nearby, here is a
shortform:

Relative Address Register Abbr.

0 Data Register D

1 Error Reg. / Write Precomp. Reg. E /WP
2 Sector Count SC

3 Sector Number SN

4 Cylinder Low C

5 Cylinder High C

6 SDH (Sector Size, Drive, Head) D H

7 Status Reg. / Command Reg.

Also remember that the data register is the only 16-bit register!

Every parameter register of the task file is freely accessible as
long as there is no active command. Before loading the com-
mand register, all related parameter registers must contain the
appropriate values. They may be loaded in any order. After the
command register is loaded, the issued command is immedi-
ately started. The original WD1010 hard disk controller chip
had a flag (bit 1 of the status register) which was set during
execution. With IDE drives, the BUSY flag of the status reg-
ister is simply set until the command execution is completed.

The WD1010 controller chip knew only 6 commands. How-
ever, some of the commands have option flags within them. To
support additional features, today’s drives have many more
commands. The following is a list of common commands,

The Computer Journal / #64

options, and needed parameters, with the WD1010 commands
marked by an asterisk and the manufacturer-dependent expan-
sions marked with a plus sign:

Command Type 76543210 Hex Parameters

Recalibrate * 0001 (Rate) 10-1F D
Read Sector *0O0100ML T20-27 SC,SN,C,D,H
Write Sector *00110MLT30-37 SCSN,CDH

Scan ID / Verify * 0100000 T 4041 D,(SC,SN,C,H)

Write Format * 01010000 50 C,D,H,(SC,SN)
Seek * 0111 (Rate) 70-7F C,D,(H)
Exec Diagnostics 10010000 90 D

Set Drive Parameters1 001000 1 91 SC,(C),D,H
Read Multiple + 11000100 C4 SC,SN,C,.D,H
Write Multiple + 11000101 C5 SC,SN,C,.D,H
Set Multiple + 11000110 Cé6 SC,D

Power Commands+ 11100 xxx EO0-E6 SCD

Read SectorBuffer 11100100 E4 D
Write Sector Buffer 1 1101000 ES8 D

Identify Drive 11101100 EC D
Cache On/Off + 11101111 EF D, WP
Power Save + 11111xxx F8FD ?

Parameters in parentheses are needed with some drives and
ignored by others (depending on the manufacturer and age).
Any required parameters must be valid before a command is
started.

Although most of the commands are manufacturer-dependent,
this usually does not raise problems. For normal operation of
the drive, only the WD1010’s and few of the really common
commands are needed. Now let’s have a look at the options.

In the Restore and Seek commands, there is a four-bit rate field.
This was originally intended to specify the step rate for head
movements, with a zero value meaning 35 us per step and all
other values representing counts of 0.5 ms per step (so that the
range was from 0.5 to 7.5 ms). The hard disk controller had a
memory for each drive’s step rate, so the same value would be
used for implied seeks later. But very soon, even with later ST-
506 controller boards, this step-rate field became obsolete (due
to handshake mechanisms between controller and drive). With
today’s IDE drives, the four lower bits of those commands are
generally ignored.

25

Continued from page 26.

and not generate any by itself. For the ‘“M’’ option, the details
described above apply.

Scan ID / Verify Sectors (4xh):

This is a very strange command. As far as I know, it is the only
one that is totally incompatible between the old AT’s hard disk
controller and today’s IDE drives. It would appear that this
command was never used by common system implementation
or application software...

For the WD1010 controller, this is the Scan ID command. It
lakes no parameters at all (except for the drive and head which
originally had to be contained in a register external to the
WD1010). When the command is started, the controller searches
for the next ID field and reads the contents into the task file.
This way the actual drive, head, cylinder, and sector size could
be examined. The sector number was also transferred into the
task file, so the sector numbering order could be figured out by
repeating this command fast enough.

For the IDE drives, this is a completely different command:
Verify Sectors. It is similar to the Read Sectors command
except that no data is transferred to the host, and the “L”’
option is not supported. Thus, it needs all parameters in the
task file. Up to 256 sectors of data will be read into the sector
buffer, and their ECC bytes will be verified. The DRQ flag will
never be set. The completion status of the command can be read
from the status register.

It is interesting that both types of controller/drive support the
retry option - so this is the only compatibility of this command.

Format Track (5xh):

Originally, this command was used to physically format an
entire track of the hard disk, exactly as it’s done when format-
ting floppy disks. The Format Track command is started simi-
larly to the Write Sectors command: first the task file must be
set up, then the command written to the command register.
After that, the drive responds by setting the DRQ flag. The host
must then write data into the sector buffer until the DRQ flag
is reset. After that, the command is executed.

For the format command, the sector buffer must contain special
data. As with the index field array when formatting a floppy
disk, it must contain valid sector ID’s for every physical sector
of the track that will be formatted, beginning at the start of the
buffer. Each sector ID in the buffer consists of two bytes. The
unused remainder of the buffer is ignored by the format com-
mand, but must also be written for the DRQ signal to disap-

pear.

The first byte of each sector ID is a flag byte. The WD1010
knew only two different values for this descriptor:
00h = good sector,

The Computer Journal / #64

80h = bad sector.

Today’s IDE drives offer two more descriptor values:

40h = assign sector to alternate location,

20h = unassign alternate location for this sector.

We’'ll look further at these values below.

The second byte of each ID is the sector-number byte. It
contains the number by which the related sector is referenced
later during normal r/w operation. The ID fields in the sector
buffer are assigned to the physical sectors (created through
formatting) in the order they are stored in the buffer. So it is
possible to define an interleave factor by appropriate physwal
sector numbering. Here is an example:

Addr. 00= 0001 0011 0002 00 12
08 = 0003 0013 0004 00 14
10= 8005 0015 0006 00 16
etc.

Here we see the first 12 (of 32) ID words. The starting sector
has number 1 (as usual). The interleave factor is two, since
each sector appears two sectors after its logical predecessor.
You can also see that sector number 5 (the 9th sector physi-
cally) is marked bad.

Due to surface errors on the hard disk, there are some positions
where the media won’t store magnetic information reliably
enough (if at all). The defect list for a particular drive then
shows the cylinder, head, and ‘‘BFI’’ (byte from index) value
of the defect. People then had to calculate the bad-sector
position and number from each of those BFI values. However,
it is not commonly known that the relationship between the
BFI value and the sector number depends not only on the sector
size but also on the interleave factor and the starting sector
number...

Again, things changed as the years went by... I already men-
tioned when introducing the features of modern IDE hard
disks, that those drives don’t have defect lists any more, due to
the usage of internal spare sectors. For compatibility reasons,
these drives still accept the Format Track command. However,
most drives only simulate its execution - internally they don’t
really format any track. Modern drives are ‘ *hard-sectored’” by
the manufacturer, with the sector size unchangeable by the
user. But by virtually formatting a track, one can assign new
sector numbers (for example, starting with O instead of 1).
However, the sector numbering order is often ignored. Because
IDE drives commonly have built-in cache memories, the defi-
nition of an interleave factor would make no sense. So, the
drive always uses the fixed sector ordering which gives maxi-
mum performance in combination with the cache.

To make things still more complicated, the Format Track
command of IDE drives allows for the assignment of data
sectors to the spare sectors and for the release of those assign-
ments (look at the descriptor bytes above). All IDE drives have
some spare sectors to which the data of defective sectors is
automatically mapped. Normally, there is one spare sector per
track, resulting in about 2-3% spare capacity. This is more than

31

enough. When a sector appears too unreliable during normal
operation, the drive simply marks that sector as bad internally
and moves the data to the nearest free spare sector. As long as
not all spare sectors are assigned, the user won’t notice any-
thing. However, these assignments can also be done explicitly
by use of the Format Track command. But it is strongly recom-
mended not to do that! First, one will normally get no defect
list for an individual IDE drive containing the BFI positions.
Second, even if a sector which was assigned to one of the spares
is marked good again, the related spare sector can not be used
again! So with every unassignment of a spare sector, you loose
that irretrievably.

So we come to this result: with standard (i.e., ST-506) drives
and external controller (i.e., WD1010) it makes sense to format
the drive in order to freshen the surface magnetism, to get a
defined state (sector numbering and order), and to mark defect
sectors as bad (so that the operating system can behave accord-
ingly). With IDE drives, it’s best to leave them just as they are
coming from the factory!

Seek (7xh):

This command is used to move the r/w heads to a particular
cylinder explicitly. For normal operation of the drive, it is
usually not necessary, since all r/'w commands perform implied
seeks. However, this command can easily be used for bench-
marks to determine the drive’s seek times. With the WD1010
controller, the four lower bits of the command byte contain the
step rate (described above). IDE drives simply ignore these four
bits.

Execute Diagnostics (90h):

This command is common to all IDE drives but not available
with the WD1010 controller. When issued, the drive performs
an internal self-test. If the drive is a master drive, and a slave
drive is connected to it, the master also waits a limited time for
the slave to complete its self-test. During all this time, it is busy
(the according flag in the status register is set). After finishing
the test procedure, its results are placed in the error register. In
this special case, the content of the error register has to be
considered as a single byte value, not as several bit flags. There
are the following error codes:

0l1h no error detected,

03h sector buffer error.

(These codes are supported by Conner drives. Maybe other
manufacturers use more or different codes.)

If the slave drive diagnostics failed, the MSB of the error
register is set, leading to values of 8xh. However, even with
single drive configurations this bit sometimes is accidently set.
It may be ignored then.

Set Drive Parameters (91h):

An IDE-only command again. After power-up or reset, the
drive can immediately be used in its default mode. However,

32

the drive’s logical parameters can be changed by setting them
with this command. This way, the drive can be set up to
different modes in order to emulate the parameters of another
common drive. The task file registers which are used with this
command, and the way in which they are used, may differ.
Some drives are really flexible and allow any parameters that
result in no more than the drive’s real capacity. Other drives
(for example, my Conner CP-3044) support only two or three
modes with fixed parameters. So for their selection, only part
of the task file’s registers are needed. Most, if not all, drives
will accept this command with valid parameters in the SC, C,
and H registers (even if not all the parameters are required),
defining the number of sectors per track, cylinders, and heads.

Because of the differences, it is advisable to first collect de-
tailed information about the supported emulation modes of a
particular drive, before defining its operating parameters.
Normally, it’s best to operate a drive in its native mode (so the
logical parameters equal the physical ones). However, there’s
another strange detail: there are drives which don’t support the
native mode! My Conner drive again serves as example: the
drive has 1053x2x40 sectors (cylinders by heads by sectors)
physically, but supports only a pseudo-native mode with
526x4x40 sectors, and an emulation mode with 981x5x17
sectors (which is for compatibility with older 40 MB drives).
Additionally, depending on the internal software version, the
drive defaults to the emulation mode or to the pseudo-native
mode.

As a result, it is recommended that the operating parameters
always be defined after power-up or reset. And to define them,
you must have detailed information about the drive you want
to use. There is a ‘‘Product Manual”’ for every drive type,
describing all those details. Unfortunately, these manuals are
hard to get. Most dealers are not willing to give them to their
customers (and some even don’t have them in stock). The other
way is to try out some parameters, starting with the information
delivered by the Identify Drive command.

The break - a sample program

I realize that I’ve already filled quite a few pages again. So I'll
make a break here and continue the command descriptions in
Part IV of the “‘Connecting IDE Drives’’ article series. Instead
of continuing now, I’ll show you a short program which reads
the ID information of an IDE drive within a PC/AT. This
sample program was written with Turbo Pascal 5.5 but may
easily be used with any version above 4.0.

You can try out this program on your AT (if you have one with
an IDE drive) and play with it until receiving the next issue of
TCJ with Part IV of the article. That part will finish the
command descriptions and will also contain some more pro-
gramming examples and shortform tables as a programmer’s
overview of the IDE interface definition.

The Computer Journal / #64

Abbreviation list:
BFI Byte From Index (position of surface defect)
DRQ commonly used for Data Request (bit flag or signal line)
IDE Integrated Drive Electronics (hard disk interface type)
/O Input/Output
PC/AT . Personal Computer/Advanced Technology (a
class of computers)
r/w read/write
ST-506 older hard disk interface standard, used between
separate controllers and MFM/RLL drives

program Get_IDE_ID,;

(* Q&D 930903 Tilmann Reh *)

(* 930905 MSDOS *)

{* Reads the ID information of IDE drives and displays it. *)
(* Should run with every IDE/AT harddisk drive.)

uses ct;
const SignOn = AmAj'Read IDE ID Info V0.1 TR 930905*mA*j;
(* /O addresses and IDE commands: *)
IDE_Data = $1F0;
IDE_Error = $1F1;
IDE_SecCnt =$1F2;
IDE_SecNum = $1F3,;
IDE_CylLow = $1F4;
IDE_CylHigh = $1F5;
IDE_SDH = $1F6;
IDE_CmdStat =$1F7;
CMD_ldentify = $EC;
(* Data types and variables: *)
type WorkStr = string[80};
BufType = array[0..255] of word;
IDRecord = record
Config : integer,;
NumCyls : integer;
NumCyls2 : integer,
NumHeads - integer;
BytesPerTrk - integer;
BytesPerSec : integer;
SecsPerTrack . integer;
d1,d2,d3 : integer,
SerNo : array [0..19] of char,
CtriType . integer;
BfrSize : integer;
ECCBytes : integer;
CtriRev : array [0..7] of char;
CtriMod| : array [0..39] of char,
SecsPerint : integer;
DblWordFlag : integer;
WrProtect : integer,;
end,
var SecBuf : BufType;
IDR . IDRecord absolute SecBuf;
Secs : real,
ij . integer;

(* Convert byte/word values to hexadecimal strings: *)
function HexByte(x:byte):WorkStr;

const Nib : array[0..15] of char = ‘0123456789ABCDEF";
begin
HexByte:=Nib[x shr 4]+Nib[x and 15];
end;
function HexWord(x:word):WorkStr;
begin
HexWord:=HexByte(hi(x))+HexByte(lo(x));
end,

(* Swaps the bytes of each “word" in string for correct reading. *)
function SwapStr(s:WorkStr):WorksSir;
var s1 : WorksStr;
i : byte;
begin
s1[0}:=s[0];

The Computer Journal / #64

for i:=0 to pred(length(s)) do s1[i+1]:=s[(i xor 1)+1];
SwapStr:=">"+s1+'<";
end;
(* Show error codes: status register and error register. *)
procedure Error(s:WorkStr);
begin
writen(* ‘;s,’; Status: ‘,HexByte(port[IDE_CmdStat)),
* * HexByte(port[IDE_Error]));
halt; end;
(* Wait until drive is ready. *)
procedure WaitReady;
const TimeOut = 5000;
var i word;
begin
i:=0,
while (port[IDE_CmdStat]>128) and (i<TimeOut) do begin
delay(1);
inc(i);
end,
if i=TimeOut then Error(‘WaitReady TimeOut');
end;
(* Wait for data request (DRQ). *)
procedure WaitDRQ;
const TimeOut = 5000;
var i word;
begin
i:=0;
while (port[|IDE_CmdStat] and 8=0) and (i<TimeOut) do begin
delay(1);
inc(i);
end;
if i=TimeOut then Error(‘WaitDRQ TimeOut’);
end;
(* Send command to drive. *)
procedure IDEcommand(Cmd:byte);
begin
WaitReady;
port[IDE_CmdStat]:=Cmd;
WaitReady;
end;
(* Read sector buffer of drive. *)
function ReadSecBuf(var Buf:BufType):boolean;
var i: word;
begin
WaitDRQ;
for i:=0 to 255 do Bufi]:=portw[IDE_Data];
ReadSecBuf:=port[IDE_CmdStat] and $89=0;
end,

(* MAIN: read drive’s ID information. *)
begin
writein(SignOn);
IDEcommand(CMD_Identify);
if not ReadSecBuf(SecBuf) then Error(‘Read Identify’),
with IDR do begin
writeln(‘ID constant
writeln(‘fixed cylinders ., NumCyis),
writeln(‘removable cylinders : ‘,NumCyls2);
writein(‘'number of heads : ‘,NumHeads);
writeIn(‘phys. bytes per track : ‘,BytesPerTrk);
writeln(‘phys. bytes per sector : ‘,BytesPerSec);

writeln(‘sectors per track : ‘,SecsPerTrack),
writeln(‘serial number : ', SwapStr(SerNo));
writeln(‘controller revision : ‘,SwapStr(CtriRev));

writeln(‘buffer size (sectors) : ‘ BfrSize);
writeln(‘number of ECC bytes . ,ECCBytes);
writeln(‘controller model . ', SwapStr(CtriModl));
Secs := int(NumCyls+NumCyls2) * NumHeads *
SecsPerTrack;
writeln(‘total sectors
writeln(‘capacity (MBytes)
end;

., Secs:1:0),
:',Secs/2048:1:1);

end.

:',Config,’ (‘,HexWord(Config),")’),;

33

CONNECTING IDE DRIVES

by Tilmann Reh

In part II we covered the basics of the IDE interface in terms
of history, concept, hardware, and register structure. In part III
I started describing the various commands and parameters of
IDE drives. This time I will finish that command description
and offer some sample driver routines.

I must apologize!

Sorry for the badly formatted Pascal listing printed with part
I11 in the previous issue of TCJ. Bill had to delete all the empty
lines in order to compress it to a single page. Now I know that
this doesn’t make a program more readable or easier to under-
stand, even if it’s written in Pascal. We will try to do this better
in the future.

Commands Continued...

We already covered most of the manufacturer-independent
commands in the previous part. However, there are three
commands not explained yet. Let’s get started with the com-
mand which was already used in the sample program printed
with the previous part -- so you’ll now know what you really
did there (in case you ran that program).

Identify Drive (ECh):

This command reads some detailed parameter information
from the IDE drive. Again, it’s invalid for the older (external)
controllers. It is started by writing the command code into the
command register, and then it executes like a Read Sectors
command. The DRQ Flag will be set, declaring that data can
be read. After having read a complete ‘‘sector’’ (256 words,
512 bytes) of data, the DRQ flag will be reset and the drive will
be ready again. The data consists of the following fields:

Word Byte

Adr. Adr. Type Content

0 0 word Configuration/ID word

1 2 word Number of fixed cylinders

2 4 word No. of removable cylinders

3 6 word No. of heads

4 8 word No. of unformatted bytes per
physical track

5 10 word No. of unformatted bytes per sector

6 12 word No. of physical sectors per Track

7 14 word No. of bytes in the inter-sector

gaps

The Computer Journal / #66

8 16 word No. of bytes in the sync fields

9 18 word 0

10-19 20-39 20 char Serial number

20 40 word Controller type

21 42 word Controller buffer size (in sectors)

22 44 word No. of ECC bytes on “long”

commands

23-26 46-53 8char Controller firmware revision
27-46 5493 40 char Model number
47 94 word No. of sectors/interrupt

(0 = no support)

48 96 word Double word transfer flag

(1 = capable)
49 98 word Write protected
50-256 100-511 - reserved (read as zero values)

Some of these fields have special meanings. The configuration/
ID word consists of 16 single-bit flags. However, I don’t know
for sure if their meaning is really manufacturer-independent.
The ““controller type’” word is encoded as a number represent-
ing a particular type.

Configuration/ID word bit flags:

15 Non-magnetic drive

14 Format speed tolerance gap required
13 Track offset option available

12 Data strobe offset option available

11 Rotational frequency tolerance > 0.5%
10 Data transfer rate > 10 MB/s

9 Data transfer rate > 5 MB/s, <= 10 MB/s
8 Data transfer rate <= 5 MB/s

7 Removable disk

6 Non-removable disk

5 Spindle motor can be switched off

4 Head switching time > 15 us

3 Not MFM encoded

2 Soft sectored

1 Hard sectored

0 reserved

Controller type word values:

0 Not specified

1 Single ported, single sector buffer

2 Dual ported, multiple sector buffer

3 = 2, with look-ahead read capabilities

The string-type data fields (character arrays) contain plain text
information about the serial number, controller model, and
firmware revision of the drive. Each word holds two characters,

29

which must be displayed with the high-byte character first in
order to get readable results.

As far as I know, most IDE drives follow the data field descrip-
tion above. However, there still are many things which are
manufacturer-dependent. Fortunately, these details are not criti-
cal. To give you some examples: The controller model field of
Conner drives contains plain text with the complete drive
description like

‘‘Conner Peripherals 40 MB - CP3044 ",

Seagate’s IDE drives offer only a short cryptic ID string, which
sometimes doesn’t even contain the drive type.

A very interesting difference, even between drives of the same
manufacturer, shows up with the ‘“Number of cylinders/heads/
sectors’’ fields. Some drives show their physical values there,
independent of the active emulation mode (for example, my
CP-3044 does so0). Other drives always show the parameters of
the active emulation, or those of the default emulation mode.
Surprising especially with my drive is that the physical param-
eters can’t be used for drive operation! As a result, the data
delivered by this command must be considered carefully. How-
ever, it’s normally possible to extract useful information by
reading the drive’s ID information for several different active
emulation modes.

Read/Write Sector Buffer (E4h/E8h):

These are the last two common IDE commands. With these
commands it’s possible to read or write the drive’s sector buffer
directly. I haven’t found any use for these yet, but probably
there is (at least was) one. In my opinion, these commands are
useless for normal operation.

Block Mode Commands (Read/Write/Set Multiple, C4..C6h):

By the use of these commands, one can access disk data in
larger blocks than the physical sector size. Several sectors are
grouped together and handled as a block of data. However,
many drives don’t support this mode. I don’t have detailed
information regarding the parameters. If a particular drive
supports the block mode, the details will surely be printed in
its user manual.

Power Commands (EO..E6h, except E4h):

The power commands are not supported by every IDE drive.
However, if they are, they are normally compatible. The power
commands are commonly used within portable computers
(laptops, notebooks, handhelds, or whatever the names are).
They allow for automatic or manual changing between nor-
mally four operation modes:

Read/Write Mode (4.2 W) complete drive circuitry operating
Idle Mode (2.0 W) motor running, r/w circuitry turned off while
no command is active
30

Standby Mode (0.5 W) motor stopped, r/w circuitry turned off,
interface active
Sleep Mode (w/a) everything stopped, exit only with reset

The power requiremcei... .netav:.d i this table are those of
my Conner 42-MB drive. While no r/w operation is in progress,
the drive normally is in idle mode (also when being reset).
Read/write mode is always automatically entered when a r/w
command is issued; after completion of that command, the
drive enters idle mode again.

When the drive is put into standby mode (manually or auto-
matically, see below), the drive (motor, r/w circuit) is shut
down while the host interface remains active. So when a
command is issued which requires motor or r/w operation, the
appropriate circuitry is automatically switched on again.

Once the sleep mode is entered, there is no way out except for
resct by means of hardware or software. This is because even
the drive’s local processor and interface controller are stopped,
so there is no way to communicate with the drive. (However,
the task file can still be read.)

As mentioned above, there are six power commands:
Set Standby Mode (EOh), Set Idle Mode (E1h):

The drive will enter the desired mode immediately. There are
no parameters required. If the drive already is in that mode, the
command will have no effect.

Set Standby (E2h) or Idle (E3h) Mode with Auto-Power-Down:

These commands take a parameter in the sector count register.
If that parameter is non-zero, the Auto-Power-Down (APD)
feature is enabled (with a zero value, APD is disabled). When
one of these commands is issued, the drive immediately enters
the desired mode. If APD is enabled, the drive will automati-
cally enter standby mode after being in idle mode without
activities for a given period of time. This delay can be specified
by means of the parameter for these two commands: the SC
register must contain the delay time in counts of 5 seconds. The
minimum delay of 60 seconds will be set if the SC register
contents is smaller than 12. With a maximum value of 220, the
maximum delay is about 18 minutes. These limits again apply
to my particular drive; other drives may have other specifica-
tions.

Read Power Mode (E5h):

This command reads the actual mode. If the motor is spinning
(meaning that the drive is in idle mode), the value FFh will be
returned in the SC register. Else (when in standby mode or just
spinning up) a zero value will be placed in the SC register.

Set Sleep Mode (E6h):

This command puts the drive into sleep mode immediately.

The Computer Journal / #66

Every internal activity is terminated and all circuitry switched
off.

There are some more power-related commands, having the
command codes F8..FDh (except FCh). Their general meaning
is similar to the power commands described above (E0..ESh),
except that the time delays are specified more exactly (in
counts of 0.1 seconds). However, I have not yet seen a drive
which supported these commands, and I don’t have detailed
information about them.

Cache On/Off (EFh):

This is the last command which I will explain here. It is used
for enabling or disabling the automatic read-ahead feature
(read cache) of the drive. The write precompensation register
(WP) is (mis-)used as a parameter register for this command
(today, this is the only use of the WP register). If the WP
register contains AAh, the feature is enabled; with 55h, it is
disabled. Every other value will result in an aborted command
error. After reset, the drive defaults to read-ahead feature
enabled.

Whew -- this was a lot of stuff! (I hope it was not too hard.)
However, now you should know about IDE commands in detail
(if you didn’t fall asleep while reading). Before we start prac-
tical work, here, for the programmers, are the short-form tables
that I promised.

Table 1: Task File Registers (as printed in part I)

/CSO0/CS1 A2 A1 AQ Addr. Read Function _Write Function

0 1FO0 Data Register Data Register

1F1 Error Register (Write Precomp Reg.)
1F2 Sector Count Sector Count

1F3 Sector Number Sector Number
1F4 Cylinder Low Cylinder Low

1F5 Cylinder High Cylinder High

1F6 SDH Register SDH Register

1F7 Status Register Command Register
3F6 Alternate Status Digital Output

3F7 Drive Address Not Used

DA aaa0000
no.ao;o_ao—no

- —=000OO0OO0OO0OO
OO == a2caacaaa

Table 2: Error Register

Bit Flag Meaning
BBK Bad block mark detected
UNC Uncorrectable data error

IDNF Sector ID not found

ABRT Command aborted (status error or invalid
ommand)
TKO Track 0 not found during recalibration

=20 NWHOOON

The Computer Journal / #66

Table 3: SDH Register

Bit Flag Meaning

7 EXT Extension Bit. Always 1.
6-5 SIZE Sector Size. Always 01 (512 byte sectors).
4 DRV Drive bit. Master/single drive = 0, slave = 1.

3-0 HEAD Head field. Binary head number 0..15.

Table 4: Status Register, Alternate Status Register

Bit _Flag _Meaning
7 BSY Drive busy. Task file cannot be accessed.
6 DRDY Drive ready (up to speed and ready
for command).
5 DWF Drive write fault.
4 DSC Drive seek complete (actuator on track).
3 DRQ Data request (ready for data transfer).
2 CORR Corrected data (bit is set when data has
been recovered by use of ECC).
IDX Index. Active once per disk revolution.
0 ERR Error. See other bits and error register.

Table 5: Digital Output Register
Bit Flag _Meaning

2 SRST Software reset (active when set to 1).
1 /IEN Interrupt enable (active when set to 0).

Table 6: Drive Address Register

Bit Flag Meaning

7 - not driven (for PC floppy compatibility)

6 MWTG Write gate (active when 0)

5-2 /HSx Head select 3..0, one’s complement of
active head

1 /DS1 Drive 1 selected (active when 0)

0 /DSO Drive 0 selected (active when 0)

Table 7: Commonly needed Commands with Parameters

Code _Command Parameters
1x Recalibrate D

20 Read Sectors with retry SC,SN,C,D,H
30 Write Sectors with retry SC,SN,C,.D,H
40 Verify Sectors with retry SC,SN,C.D,H
50 Format Track C,DH

7x Seek c.D

90 Exec Diagnostics D

91 Set Drive Parameters SC,(C),D,H
Ex Power Commands, see below

E4 Read Sector Buffer D

E8 Write Sector Buffer D

EC Identify Drive D

EF Cache On/Off D,WP

31

Power Commands:

EO Standby Mode -
E1 Idle Mode -
E2 Standby Mode with APD SC
E3 Idle Mode with APD SC
ES Read Power Mode (SC)
E6 Sleep Mode -

Table 8: Error Conditions

~ When an error occurs, the error flag in the status register
(ERR) is always set. For the different groups of commands, the
following status/error flags are valid then:

Recalibrate ABRT,TKO,DRDY,DWF,DSC
Read, Verify BBK,UNC,IDNF,ABRT,DRDY,
DWF,DSC,CORR :
Read Long, Write, Write Long BBK,IDNF ABRT,DRDY,DWF,DSC
Format, Seek IDNF ,ABRT,DRDY,DWF,DSC
Diagnostics, Initialize, R/W Buffer,Identify, Set Cache
ABRT
Invalid command ABRT

Table 9: Interrupt Conditions

The drive generates an interrupt (if enabled) under the follow-
ing conditions:

Recalibrate after successfully reaching track 0

Read each time DRQ is set

Write when DRQ is set, from second sector on
(only when multiple sectors are written)

Verify after completion for all sectors

Format Track after completion

Seek, Initialize, Power Commands (except Sleep)

after command is issued/initiated
when drive is in sleep mode
when data is ready for reading

Set Sleep Mode
Read Buffer, Identify

Now let’s come to the example routines for accessing an IDE
drive. These examples are given as Turbo-Pascal (3.0) source
(based on my IDE test program). They apply to the use of my
IDE interface board (described in TCJ #56), so there always are
512 data bytes transferred instead of 256 data words.

In all examples, named constants are used for accessing the
IDE registers at their particular I/O addresses. These named
constants must be declared elsewhere. Their names are derived
from the related IDE register names and IDE commands.

The examples are programmed in a very modular fashion so
that they are easy to understand. For implementation in a
system BIOS, for example, most of the subroutines will contain
so little code that the complete read/write routines will nor-
mally be coded inline. In addition, a real implementation,
unlike these examples, will have time-out functions in most
loops. If someone is interested in the IDE driver of my CPU280
system BIOS, please contact me (however note, it’s Z280
assembly language and commented in German).

32

1. General access: Wait for drive ready / wait for data request

In Pascal, two small procedures serve this purpose. In assembly
language, I use two macros instead, because the subroutine
calling overhead would be too much.

procedure Wait_Ready;

begin

repeat until port[IDE_CmdStat]<=128;
end;

procedure Wait_DRQ;

begin

repeat until port[IDE_CmdStat] and 8<>0;
end;

2. General access: Command issue

procedure IDE_Command(Cmd:byte);
begin

Wait_Ready;
port[IDE_CmdStat}:=Cmd;

end;

3. General access: Reading/Writing the sector buffer

In the Pascal implementation, the two functions return a Bool-
ean value which is true if there were no errors during r/w of the
buffer.

Both routines require the drive to be ready for data transfer!

function Read_SecBuf(var Buf:BufType):boolean;

var i : integer;

begin

Wait_DRQ;

i:=port[IDE_Data]; (* specific to my IDE interface board *)
for i:=0 to 511 do Buf]i]:=port[IDE_Data];
Read_SecBuf:=port[IDE_CmdStat] and $89=0;

end;

function Write_SecBuf(var Buf:BufType):boolean;
var i : integer;

begin

Wait_DRQ;

for i:=0 to 511 do port[IDE_Data]:=Bufli];
Wait_Ready;

Write_SecBuf:=port[IDE_CmdStat] and $89=0;
end;

The Computer Journal / #66

4. General access: First access, initialization

procedure HD_Init(Cyls,Heads,Secs:integer);
begin
port[Dig_Out]:=6;
delay(10);
port[Dig_Out]:=2;
Wait_Ready;
port[IDE_SecCnt]:=Secs;
port[IDE_CylLow]:=lo(Cyls);
port[IDE_CylHigh]:=hi(Cyls);
port[IDE_SDH]:=pred(Heads)+$AO0;
IDE_Command(Cmd_Initialize);
end;

(* Drive Software Reset *)

5. Data access: Single sector read

function HD_ReadSector(Cyl,Head,Sec:integer; var
Buf:BufType):boolean;

begin

Wait_Ready;

port[IDE_SecCnt]:=1;

port[IDE_SecNum]:=Sec;

port[IDE_CylLow]:=lo(Cyl);

port[IDE_CylHigh]:=hi(Cyl);

port[IDE_SDH]:=$A0+Head,

IDE_Command(Cmd_ReadSector);
HD_ReadSector:=Read_SecBuf(Buf);
end;

7. Data access: Single sector write

function HD_WriteSector(Cyl,Head,Sec:integer; var
Buf:BufType);

begin

Wait_Ready;

port[IDE_SecCnt]:=1;
port[IDE_SecNum]:=Sec;
port[IDE_CylLow]:=lo(Cyl);
port[IDE_CylHigh]:=hi(Cyl);
port[IDE_SDH].=$A0+Head;
IDE_Command(Cmd_WriteSector);
HD_WriteSector:=Write_SecBuf(Buf);
end;

Now we have reached the end of the ‘‘behind IDE’’ article
series. In another column I will describe my revised IDE
interface board for the 8-bit ECB bus in somewhat more detail
than in TCJ #56. This will include a TTL equivalent of the
GAL contents, for those who are inexperienced in reading a
Boolean equation design, or who want to build it up using
discrete logic.

For a list of abbreviations, see parts II and III of this article.

47

The Computer Jownal / #66
-

